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RESEARCH MEMORANDUM

PIANING CHARACTERTSTICS OF THREE SURFACES
REPRESENTATIVE OF HYIRO-SKI FORMS

By EKermeth L. Wadlin and John R. McGshee
SUMMARY

The plening characteristics, as determined by tank tests, are pre-
gented for three surfaces representative of hydro-skil forms. One surface
was of rectengular plan form with a flat bottam, the second swrface had a
rectangular plen form with transversely curved bottom and the third
gurface had a Plat bottom but wes triangulasr in plan form. The range of
trims Investigated was 4° o0 20°. The date are presented in the form of
plots of load, reslstance, trimming moment, and draft ageinst wetted
area. Plots o:E‘ wotted length, wetted area forward of the observed wetted
length at the chine, and aerocdynamlc tare forces are Included.

INTRODUCTION

The use of retractable plening surfaces, called hydro-skls, for
supporting Jet-propelled water-based alrplanes during the high-speed part
of thelr teke-offs and landings, was proposed in reference 1. The
results of some preliminery tests of models fitted with hydro-skis are
presented in references 1 and 2.

Hydro-skis are Intended to be parits of the elrplane which cam be
extended for lending and take-off. Since the skis come fraom the fuselage
which 1s generally rounded or the wing which 1s more or less flat, the
skis also wlll generally have rounded or flat cross sectlons. E[hough
some data are avallable on flat rectangulsr planing surfaces (see refér-
ences 3 and 4), the range of trims is limited. FPractically no data are
available on the characteristlics of planing surfaces wlth convex cross
sectlons or plan forms other than rectangles.

Information as to the effects of plan form and cross-secticnal
curvature should therefore be an &ld In deslgning hydro-skis and hydro-
skl arrangements. Because of thls, an investigation was initiated at
Langley teank no. 2 to determine the characteristics of plening surfaces
of severasl plan forms and transversgely curved bobttoms. This paper pre-
sents the results of some planing tests of three such surfaces. For con-
venlence in locating the data presented, an index of figures 1s presented
in table 1. Because of current Interest of the Alr Force and the Bursau
of Aeronautics In obtaining data pertaining to hydro-skis, the data in
this paper are presented wlthout analysis or discussion to meske it availl-
able as quickly as possible.
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MOTETS AND APPARATUS

The princlpal details of the models tested are given in figures 1
to 3. Model 250A hed a flat bobttom surface and a rectangular plan form.
Model 250B had a rectangular plan form but the bottom was curved in cross
section. Model 250D had a flat bottom and a trianguler plan form; it
waes teated with the base of the triangle forward (leading edge). All
models had the same plan-form area (0.347 sg £t) and were made of solid
mahogeny. The upper surface was arblirarlily failred by making all the
longitudinal sections circuler arcs with a helght at the center of 5 per-
cent of the chord which forms the bottom of the sectiom.

The tests were made on the small model towlng gear in lLangley tenk
no. 2. The test setup iz shown in figure L.

Two lenticular struts supported the models from a trimming moment
dynsmometer which was fastened to the towing staffs A phosphor bronze
strap In the dynamometer restrained the model in trim. Electrical strain
gages fastened to thls strap indicated the trimming moment encountered.
The towlng staff was free only in rise and the vertical loasd was varied
by cowmterbalancing. Changes In draft were read by means of & disc and
polnter arrangemsnt which mechanicelly magnified chenges in the vertical
position of the staffs -The guldes for the steff were conmected to the
resistance dynamomster. This dynamometer consisted of a cantllever
spring, the deflections of which were magnified by an optical system.

PROCEURE

General

The tests consisted of towlng the models at various speeds and
loads, at fixed trims of 4°, 8%, 12°, 16°, and 20°. A sufficient number
of loads were chosen at each trim to define the variations of resistance,
trimming moment, and draft-with wetted length. The maximum speed was
determined by the measuring limits of-the equipment and ranged fram 30
to 35 feet per second. The minimum speed was set at 10 feet per second
since indicatlons were that below thls speed satisfactory plening data
could not be obtained with these models. Reslstance, trimming moment,
draft, and wetted length were read. Draft is the depth of the tralling
edge of the model below the free-water surfece. Trimming moment was
measured sbout an arbitrary point above the model and from the measured
results the trimming moment about the trailling edge at the center line
of the model was calculated.

Wetted Length

The wetted length read was the dlstance fram the tralling edge of
the model to the intersectlon of the dynamic solid water boundary with
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the chine of the model. (See Ffig. 5.} Forward of this boundary there
was a region of loose spray which seemed tp fan out from the bowmdary.
Because of the transverse curveture of model 250B some dlfficulty was
encountered in visually reading wetted lengths particularly at the lower
trims. A few underwater photographs (see fig. 5) showed that the
visually read wetted lengths were satisfactory except at 4° trim. There-
fore, additlonal wmderwater photographs were taken at 4 trim end the
wetted lengths were obtalned from these photographs.

Dus to & forward curvature of the solid water boundary the wetted
length at the center line of all models was greater than the observed
wotted length. The manner In which this curvature varied with the models
and their wetted length, trim, and speed was determined from underwater
photographs.

The slight curvature of the solid water boundary on model 2504
(rectangular plan form, flat botbtom) gave only a smell difference between
the wetted length at the center line and the observed wetted lengthe.

Thls difference was withln the experimsntal scatter of the test data
obtained, and therefore weas not consldered.

Due to the tramsverse bottom curvature of model 250B, the difference
in the two webtted lengths varied considerably with trim. However, the
difference wes less than thet which would be indicated by the intersection
of the water surface wlth the curved bottom surfece of the model at rest
as 1s shown In figure 5. ¥Figure 6 indicates the difference in the wetted
length at the center line and the cbserved wetted length at the chins.

For model 250D (tria.ngula.r plan form, flat bottam) the dynamic water
line was In the form of an asrc having a ratlo of mid-ordinate to chord
(veem) equel to G.10. Within the range of trims end speeds covered in
these tests this ratio 4id not vary appreclably. Because of the trian-
gular plan form of the model the chord of this arc and therefore the mid-
ordinate, varied with wetted length or wetted area. Flgure T shows the
resulting difference In the wetted length at the center line and the
observed wetted lemgth at the chine.

Wetted Area

The wotted area 1s defined as the wetted plan-form eres. This area
wag determined fram the plan form of the models, the observed wetted
length at the chine, and the addliional wetted area forward of the
obaserved wetited length. The addltional wetted area forward of the
observed wotted length was determined from the vmderwater photographs.

The wetted area forwerd of the observed wetted length varied in
the same mammer as the wetted length forward of the observed wetted
length. The addlitional area Involved was neglected for model 250CA. The
area Involved for model 250B variled apprecliably only with Hrim and is
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glven in figure 8(a). The area involved for model 250D veried eppreci-
ebly only with wetted length (or wetted area) and is glven in figure 8(b)
plotted against total wetted area.

Aerodynamic Tares

The zerodynemic tares for resistance, moment, and 1ift were deter-
mined for all trims. The aerodynamic drag and moment were determined
with the model attached to the towing gear, with the model removed, and
wilth the model and strut structure removed ('bowing staff alone). When
the model was atbtached it was positioned approximately one-half inch
above the water. When the model was removed the position of the staff
end strubts wes the same as when the model was attached. With the strut
structure alsoc removed, the drag was measured at positlions of the staff
to cover the range for the drafts obtained In the tests. The aerodynamic
moment tares were found to be negligible for all models.

The aerodynsmlic drag of the gear one-helf Inch above the zero draft
pogition but with the model removed was the same for all models and dld
not vary appreciably with trim. This draeg, plus the Increments due to
change in draft (as determined from the runs made with the staff alone)
is given in figure 9.

The aerodynamic drag of the gear one-half inch ebove the zero draft
position end with the model attached was found to be the mame for
models 250A and 250B. Its variation with trim was negligible for these
models but not for model 250D. The difference In the drags with and
wilthout the model attached was consldered to be the eserodypemic drag of
the model alone. The aserodynamlc drag corrsction for the model alone
was agsumed to be equal to the ratlo of the unwetted plan-form area to
the total plan-form area multiplied by the total aerodynamic drag of the
model alane. This correctlion is given in figure 10 for models 2504
and 250B and. in figure 11 for model 250D. These values, in addition to
thoge for the gear alone, were subtracted as tare corrsctlons from all
the resistance data before plotting.

The aserodynamic 11ft was determined by counterbelancing the model
in the alr at zero speed, then running at the deslred speeds and trlms
and adding weight until the model moved downward, then removing the
wolghts 1mtll the model moved upward. The average of—these two weight
limits wae considered to be the 1ift. This 1ift, which veried appreci- ,
ably with trim, was the same for models 250A and 250B but different
for model 250D. .The serodynamic 1ift correction was also determined
as a function of unwetted area In the sams manner as for the aerodynamic
drag; 1t is given In figure 12 for models 250A and .250B and in figure 13
for model 250D. The values glven were subtracted as tare corrections
from the values of load applied to the models.
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RESULTS

The results sre presented In the form of plots of the load on the
water, reslstance, trimming mament, and draft against total wetted area
with speed and trim as parameters. Flgures 1lh to 17 give the results
for the rectangular surface with a flat bottom (model 250A). Figures 18
to 21 are for the rectangular surface with curved botiom (mogel 2503)_
and figures 22 to 25 are for the triangular surface wlth a flat bottom
(model 250D) .

From the procedure described, the quantlitles in the figures are
defined as follows:

() Resistance is the measured resistance less the aerodynamic
drag of the towing gear less model (fig. 9) and the estimated aero-
dynsmic drag of the unwetted portion of the modsl (figs. 10 and 11).

(p) Trimming moment is the measured trimming mcament referred to
the trailing edge of the model. The asrodynamic momsnt tare was
negligible.

(c¢) The load on the water is the wmbalenced weight of the model
and gear less the estimated aserodynemic 1ift of the mnmwetted portion
of ‘the model (figs. 12 and 13). The serodynemic 1ift tere on the gear
alone was negliglble.

(4) Draft is the depth of the trailing edge of the model below
the free water surface.

(e) Wetted area is the wetbed plen-form area computed from the plan
form and the observed wetted length at the chine plus the wetted area
forward of the observed wetted length (fig. 8). The latter was
negligible for model 250A.

(£) Wetted length at the chine 1s the observed length from the
trailing edge of the model to the intersectlon of the dynamic solld
water boundary with the chlne. The wetted length at the center line
wag appreclebly greater for models 250B and 250D. (See figs. 6 amd T.)

Langley Aeronsuticel Laboratory
National Advisory Cammlttee for Asronautles
Langley Alr Force Base, Va.
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Typical static waterline.

Wetted lenglth g

Typical dynamic waterline. _

Figure 5. - Underwater photographs of model 250B at trim of L°.
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